
Abstract

To describe elastic wave propagation in a medium under stress or 
strain, the second-order elastic constants (SOEC) need to be 
modified. Early studies have shown this can be accomplished by 
introducing additional third-order elastic constants (TOEC) [1]. In 
this study, we reevaluate these accommodations theoretically and 
provide ab initio verifications. We first examine the effect of 
hydrostatic stress, i.e., we describe the pressure derivative of 
SOEC; then, as a more general case, we investigate the 
modifications needed for the SOEC under hydrostatic and 
deviatoric stress. We show that in both cases the modifications of 
the SOEC are linear combinations of SOEC and TOEC. The 
relationships are tested on NaCl and MgO with ab initio calculated 
SOEC and TOEC vs. pressure. The methods to compute finite-
pressure TOEC are also self-consistently tested.

[1] R. N. Thurston, K. Brugger, Phys. Rev. 133, A1604–A1610 (1964).

Introduction

A heterogeneous distribution of stress and strain is common in 
many geophysical fields of study. For example, anisotropy in the 
lower mantle, which affects seismic wave propagation, is 
anticipated to be controlled by strain and texture (Couper et al., 
2020). Practical applications, such as hydrocarbon reservoir 
characterization and volcano monitoring, would benefit from 
knowledge of the effects of strain and stress on elastic moduli and 
the propagation of mechanical waves (Sripanich et al., 2021). A 
recent review by Sripanich et al. (2021) has examined three viable 
approaches to address the effects of stress changes on wave 
propagation. This includes an approach based on adiabatic 
pressure derivatives, third-order elasticity (TOE), and micro-
mechanical structures. Following this review, our study focuses on 
strain and stress effects related on elastic moduli. We review and 
clarify the theoretical foundation of TOE to address these 
strain/stress effects and more deeply explore the connection 
between TOEC and pressure derivatives of SOEC with validations 
based on ab initio results.

Method

• DFT software: Quantum ESPRESSO
• Exchange-correlation functional: LDA
• Pseudopotential type: Ultrasoft
• k-point sampling: 8 x 8 x 8 for NaCl, 12 x 12 x 12 for MgO
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Conclusions

In this study, we reevaluate the the effects of stress/strain on 
SOEC and TOEC theoretically and provide ab initio verifications. 
We first examine the effect of hydrostatic stress, i.e., we describe 
the pressure derivatives of SOEC; then, as a more general case, 
we investigate modification of the SOEC under hydrostatic and 
deviatoric stresses. We show in that both cases the required 
modification of the SOEC is a linear combination of SOEC and 
TOEC. The relationships are tested on NaCl and MgO with ab 
initio calculated SOEC and TOEC vs. pressure. The method to 
compute finite-pressure TOEC is also self-consistently tested.

Frame of reference
On an additional note, since each strain, stress, SOEC, and 
TOEC is defined as a difference or a derivative, they are 
associated with at least two states. Therefore, we need to clarify 
which state each of these tensors is referring to. Below we 
summarize three states.
• Natural frame: this is the unstressed state, the external 

stress is 0 GPa.
• Initial (reference) state / intermediate frame: this is usually 

a hydrostatically pre-stressed state, the tensor is said to be 
measured or calculated for this state.

• Final (current) state: this occurs when additional strain or 
stress is applied to the reference state.

The definition of stress and SOEC under these states, and 
equation for how to change the reference state is shown in the 
figure below (Thurston, 1965)
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SOEC, TOEC vs. pressure

To calculate SOEC and TOEC simultaneously, we followed Zhao et 
al.’s (2007) recipe, where elastic constants are obtained as linear 
combinations of expansion coefficients and strain energy is 
expanded to the fourth order. However, the effective elastic 
constants 𝐶!"#$ (Thurston 1965) need to be distinguished from the 
second derivatives of the internal energy 𝐴!"#$ for finite pressure. 
The following figures show our results for SOEC and TOEC:

Pressure derivatives of SOEC

Pressure derivatives of SOEC were calculated in two ways. A 
numerical derivative of SOEC vs. P was compared to TOEC 
predictions. The formula for predicting the P derivative with TOEC is 
similar to previously reported ones (Barsch, 1967):

𝜕𝐶!"#$
𝜕𝑃

= 𝐴!"#$%& 𝐶'( %&)*𝛿)* +
1
3
𝐴!"#$ 𝐶'( %&)*𝛿%&𝛿)*

The following figure shows numerical derivatives of SOEC 
compared to TOEC predictions:

Effects of stress/strain on elastic constants
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For validation, we determined the change in elastic constants under 
induced strain/stress. We calculated the change in elastic constants 
before and after the strain/stress are applied. Then we compare our 
theoretical predictions based on TOE theory to ab initio calculations. 
Two cases are tested, one under hydrostatic conditions and one 
under uniaxial stress/strain.
To determine changes in elastic constants, we calculate 𝐴!"#$ for an 
initial hydrostatic state (1) and a uniaxial state (1u). Supplementary 
states (1’) and (1u’) are also introduced as “initial” and “final” states 
for strain-stress calculation the tensor terms. The following figure 
summarizes the states discussed above.

The change in SOEC could be measured under a uniform reference 
frame (all under state (1)) or in their own frames as a direct difference.

Uniform reference frame
To address the change in different reference frames, the following 
equation is tested:

Δ𝐴 = 𝐽𝐹!!!
'(𝐹""!

'(𝐹##!
'( 𝐹$$!

'(𝐴!!"!#!$! 𝑉, 𝑒%& − 𝐴!"#$ 𝑉, 0
= 𝐴!"#$%&𝑒%&

Direct difference
To address the change in different reference frames, the following 
equation is tested (Eq. 4 from Tromp et al., 2019; Tromp & Trampert, 2018):
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