&5 COLUMBIA | ENGINEERING ~ Lamont-Doherty Earth Observatory ViLab @ Energy barriers for proton hopping Order-disorder transition with mc-QHA

7 v [he Fu Foundation School of Engineering and Applied Science COLUMBIA UNIVERSITY | EARTH INSTITUTE

We calculate the energy barrier for a proton jump in the HOC-11 We attempt to reproduce the disordering transition in “d" Structures
structure. Wen used the nudged elastic band (NEB) method. Be- using the 4 configurations proposed by Tsuchiya et al. [2].
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sider a more orderly disorder. Dynamically, jumps could occur in 10-20 GPa, the most important structure is HOC-11*.
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dered, otherwise the backward barrier will vanish, and the T 0.6 _ i i |
. . o . o . “jumped” atomic configuration is not stable. N L i i |
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0-AIOOH is a high-pressure polymorph of boehmite (a-AIOOH) with a wide pressure and tem- N o 1x1x4(125%) tions calculated with multicontiguration QHA.
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boundary (CMB) at ~136 GPa. Attempts to resolve the structure of this mineral under pressure - e at 300 K with mc-QHA. The overestimation of volume is HOC-12 (8) HOC-22 (2)
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revealed that hydrogen bonds (H-bond) “symmetrize” under compression, a phenomenon : ~ caused by the usual DFT error but we are able to repro
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